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Scope of the conference

Modelling activities are steadily increasing in all scientific disciplines, ranging from financial to 

environmental assessments. Sensitivity Analysis is crucial both in the modelling phase and in 

the interpretation of model results. It contributes to model development, model calibration, 
model validation, reliability and robustness analysis, decision-making under uncertainty, 
quality-assurance, and model reduction. 

SAMO conferences are devoted to advances in research on sensitivity analysis methods and 

their interdisciplinary applications, they are held every third year. The aim of the conference is 

to bring together researchers involved in the developments and improvements of methods and 

strategies and users of sensitivity analysis in all disciplines of science, including physics, 

operations research, chemistry, biology, nanotechnology, engineering, environmental science, 
nuclear and industrial safety, economics and finance, etc. 

The first day (July 1) is organized jointly with the MASCOT-NUM network and is devoted to 
presentations by PhD students working on the topics covered by the SAMO conference and 

MASCOT-NUM (uncertainty in simulation, sensitivity analysis, design and modelling of 

computer experiments, model validation, optimization under uncertainty, applications, etc.). A 

submission call has been launched to PhD students. Eight PhD students have been selected 

for oral presentations, other student submissions being considered for poster communications. 
A prize of 1000€ will be conferred by the MASCOT-NUM's scientific committee to the best 
student communication (to be used by the student to go to a meeting). 
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Calibration and validation procedures are increasingly ascending transportation modellers’ and 

practitioners’ top priorities, as the use of such tools is quickly spreading and its models progressively 

improved. Traffic simulators are increasingly being applied in many different traffic scenarios and the 

consistency with the available data needs to be assured. Furthermore, the access to both new and 

advanced modelling techniques and detailed traffic and behavioural data, is increasing the level of 

detail of improved traffic simulation models. These challenges have been linked to the need of a 

consistent understanding of the simulators performance, along with the appropriate calibration and 

validation procedures to monitor its uncertainty. Sensitivity analysis is the tool used with this aim. 

Only a small number of sensitivity analysis practitioners make use of the advanced techniques made 

available in the recent years. The One-At-Time approach has been applied to microscopic simulation 

model in order to select the parameters to be calibrated and to get further insight on the meaning of its 

values after the calibration of car-following models. Analysis of variance based methods (ANOVA) 

were recently applied to draw inference about the effects of the traffic simulation models’ parameters 

(1,2). However, almost all these studies only accounted for first order effects, ignoring the interaction 

of parameters. A recent and more efficient method based on variance decomposition as well has also 

been used for model a car-following model sensitivity analysis (3). All these applications were 

however applied to specific driver behaviour models. In order to explore the entire set of parameter 

interactions over the whole parameter space of typical traffic simulators, global SA methods are 

required. Although global methods may provide far more insight for nonlinear models, they can 

require large numbers of model runs. In addition, the interpretation of such global sensitivity tests can 

be difficult because of the number of parameters involved and the potential complexity of the causal 

relationships. 

To overcome these issues, we propose a multi step approach. In general, a first sensitivity analysis is 

carried out on the sub-models and a second sensitivity analysis on the individual parameters belonging 

to the subset of the most influential sub-models. At each step, the sensitivity analysis approach used in 

this study was the variance-based approach based on Sobol’s decomposition of variance (3). This 

approach requires the evaluation of the model N*(k+2) times, where k is the number of model 

parameters (or groups) and N is the dimension of the Monte Carlo experiment. 

More specifically, after grouping the parameters by modelling affinity, each parameter combination 

within the same group was mapped using Sobol’s quasi-random sequences (6) and extracted from an 

uniform distribution defined by predefined ranges. The variance-based approach is then applied and 

the groups with highest share of the model variance are selected. A second sensitivity analysis is then 

carried out on the individual parameters of the selected groups. If number of parameters is still large, 

the previous steps are repeated. 

The proposed methodology was tested on the advanced driver behaviour model MITSIM, accounting 

for a total of one hundred model parameters (4). This model is of particular interest due to the high 

interaction of all complex models describing the driver behaviour. The model integrates four levels of 

decision-making: target lane, gap acceptance, target gap and acceleration, in a latent decision 

framework based on the concepts of short-term goal and short-term plan (refer to 5 for a complete 

description). All previous calibrations of MITSIM considered the entire set of demand parameters 

(traffic input data) and only a small subset of supply parameters (driver behaviour) were generally 

selected by the modeller. The network chosen for this study was the A44 road in the region of greater 



Porto, Portugal. It is a two-lane urban motorway with a total of 3940m and 5 main interchanges. Data 

of one week combining loop sensor data, video counts samples and vehicle paths count samples was 

used in this in the simultaneous dynamic estimation of a generic weekday traffic input data. 

Several Goodness of Fit (GoF) measures between real and simulated outputs were computed, based on 

different statistics and different loop detector data, and used in the analysis. The first grouping step 

was based on the different MITSIM driver behavioural sub-models (Table 1). The sensitive analysis 

on groups allowed the selection of three most important sub-models, namely the car-following model, 

the lane utility model and the drivers’ heterogeneity model.  

Sub-model Number of Parameters 1
st
 order sensitivity index Total sensitivity index 

Driver Reaction Time Model (G1) 4 0.07 0.10 

Car Following Acceleration Model (G2) 11 0.74 0.75 

Free Flow Acceleration Model (G3) 7 0.01 0.04 

Merging Model (G4) 4 0.01 0.04 

Mandatory Lane Change Control (G5) 5 0.01 0.05 

Yielding Model (G6) 2 -0.06 0.05 

Nosing Model (G7) 6 0.03 0.05 

Nosing Control (G8) 4 -0.04 0.05 

Courtesy Yielding Model (G9) 4 0.03 0.04 

Driver Heterogeneity Parameters (G10) 7 0.23 0.28 

Target Gap Acceleration Model (G11) 13 0.00 0.04 

Gap Acceptance Model (G12) 9 -0.03 0.05 

Lane Utility Model (G13) 16 0.09 0.11 

Target Gap Model (G14) 6 0.01 0.04 

OD variability (G15) 2 -0.02 0.05 

Table 1 Group sensitivity analysis – First order and total order sensitivity indices (N=2048) 

The final sensitivity analysis has then been performed with the 34 model parameters from the selected 

sub-models and allowed individuating a group of 8 parameters accounting for almost the 90% of the 

output’s variance, with a consequent significant simplification of the subsequent model 

calibration/estimation phase. 

In synthesis, the proposed approach allowed identifying in a quantitative and objective way the most 

important parameters of the MITSIM model. In addition it has allowed choosing among different 

possible measures of goodness of fit and among different traffic measures. Further research will be 

carried out also to consider other sensitivity measures like those in (7). 
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Stochastic approach for Life of the Municipal Solid Waste (MSW) Landfill using Monte Carlo 

(MC) Simulation 
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This paper presents the application and benefits of Monte Carlo (MC) simulation in modeling 
the transit time contaminants in porous media. The transport of contaminants in a soil is 
represented by the one-dimensional (1D) form of the advection-dispersion equation given in 
[1]. For calculation of the transit time to estimate the landfill thickness of compacted clay The 
has been used the computer program CONTRANS. The output report provided by Crystal 
Ball® (CB), using with the MC, and presented in the study is the Sensitivity Chart. The present 
study is based on the data concerns the Mittal Steel Poland in Kraków.  

Keywords: Landfill, Monte Carlo Simulation, Crystal Ball®, sensitivity analysis, advection-
dispersion equation, Matlab. 

Experimental procedures  

The program CONTRANS (CONtaminant TRANSit) has been used to estimate the thickness 
of compacted soil liner of a landfill [2]. The source code of the computer program written in 
MATLAB based on the flow chart presented in [2] has been done in [4]. 

The 1D advective-diffusive governing equation for reactive solute transport in saturated soil is given 
by Acar et al. [1] as follows [2]: 
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where Rd is the retardation factor, C is the solute concentration in the direction of transport, D is the 
diffusion coefficient, vs is the seepage velocity, z is the depth (distance within the anaerobic granules) 
and t is the time. To use CB , we must perform the steps given in [3]. 

Results 

The equation (2) used for this study (see below) has been  adopted from the (1).  

Z2 = (HG*HC/POROS)*TH/EDC          (2) 

where: 
HG = hydraulic gradient, HC = hydraulic conductivity, POROS = porosity, TH = linear thickness, 
EDC = diffusion coefficient 

The statistic data used for contaminant transport simulation model Z2 using CB has been taken from 
the [4]. Sensitivity Chart, the result of the MC simulation used CB after running 10,000 trials was 
shown on the Figure 1. 
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Fig. 1. Sensitivity Chart - Target Forecast Z2

Conclusions 

The following important information can be obtained from the Sensitivity Chart: 

Sensitivity refers to the amount of uncertainty in a forecast that is caused by the uncertainty of an 
assumption as well as by the model itself. Positive coefficients indicate that an increase in assumption 
is associated with an increase in the forecast; negative coefficients imply the reverse. In the Sensitivity 
Chart (Fig. 2), we can see that Hydraulic Conductivity (HC), Hydraulic Gradient (HG) and Linear 
Thickness (TH) have a positive influence on Z2 (29.2%, 23.7% and 11.3%, respectively), and 
Diffusion Coefficient (EDC) as well as Porosity (POROS) have a negative influence on Z2 (24% and 
11.84%, respectively). 

The simulation results suggest that the MC simulation is efficient tool to use in practice over a 
large parameter range. In deterministic models significant variations in material properties lead to the 
radically different results than those predicted by the methods based on the stochastic transit time 
contaminants models. Hope fully this study will encourage other researchers to consider this approach 
as well in their works.  
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We show the advantages of using a response surface approach to evaluate the impact of different 
factors to the problem of estimating the solution and structural parameters of a system of differential 
equations. The factors considered are: distance of initial point to the true value, noise in the data and 
amount of smoothing in the estimation method. The method of estimation is based on the statistical 
analysis of functional data known as profiled estimation and given in the paper [1]. We considered 
simulating from the predator - prey system of differential equations. As responses of the experiment 
we used bias and variation of the estimation procedure. 

The approach followed considered a replicated full  factorial experiment. This allowed three levels 
for each factor and required only 27 runs for each replica. With this design we are able to estimate 
linear and quadratic main effects and two way interaction terms. Also from the replication we had 27 
degrees of freedom to estimate the experimental error term and hence to test the statistical significance 
of each of the estimated effects. 

Our study showed robustness of the estimation method for both responses when the smoothing 
constant is relatively small, and that this property deteriorates as the smoothing constant increases 
exponentially. This suggests a strategy of model fitting which consists in estimating the system with 
small values of the smoothing constant and then increases its value up to a point when the solutions 
begin to show abnormalities. 

The important issues of this approach to study sensitivity are: 1) the reduced number of scenarios to be 
considered, which in our case were 27 with one full replicate; and 2) the richness of the information 
obtained from the study. We were able to estimate linear, quadratic and interaction effects of the 
different factors, discard those that were unimportant using a statistical test, and also to plot the 
response surface for bias and variation as function of the factors considered. 

This approach represents an improvement with respect to the method of trying different initial 
conditions on the solution system of differential equations, but without a structured strategy. The 
structure is given by the well-established methodology of statistically designed experiments. 

Key words: system of differential equations, parameter estimation, profiled estimation, functional data 
analysis, inverse problems 
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One area of model calibration in which meaningful contributions are still needed is the sensitivity 

analysis (SA) of the input parameters for the calibration itself. The SA explores the relationship 

between the analysis outcome and the parameter assumptions. Due to the limitation of time and other 

resources, most calibration procedures cannot afford to calibrate all parameters in the model. Thus, 

calibration is carried out for only a limited number of input parameters. However, there is usually no 

formal procedure for selecting these parameters, other than choosing the ones that appear to the model 

user as most likely to have a significant effect on the result (such criteria is often dictated by former 

experiences). As one could imagine, the selection of an incomplete set of parameters for calibration 

may lead to multiple issues, including but not limited to, model imprecisions, and unrealistic values 

for the calibrated parameters. These problems should not be a surprise, as in traffic models there exist 

many interactions between the different parameters (e.g., many of the car-following parameters also 

impact the lane-changing model). Hence, focusing on the incorrect set might have a cascading effect. 

Therefore, a proper SA, including the initial screening of the parameters, can be very valuable for the 

subsequent calibration process. Moreover, it may actually reduce the total efforts needed during the 

actual model calibration. A good SA could provide both quantitative and qualitative information 

regarding the effects of the different model parameters (and their variations) on the simulation results.  

Unfortunately, to the authors’ knowledge, there are few examples of applying SA in the 

calibration of microscopic traffic models: the authors of (1) used the One-At-a-Time (OAT) method to 

evaluate the variance of the VISSIM output. The variance-based SA approach was employed in (2,3) 

for microscopic traffic simulation models and in (4) for two car-following models. Despite these 

examples, there appears to be no previous research suggesting a standard SA method that is efficient 

yet accurate to be applied for the calibration of microscopic traffic models.  

In this light, this present paper aims at comparing two recently developed SA methods, in order 

to better understand their advantages and disadvantages. The first model, called quasi-OTEE, was 

introduced in (5). It is a general screening approach based on the Elementary Effects (EE) method (6) 

but with much higher efficiency. It screens the influential parameters through computing the 

corresponding EE and qualitatively comparing the Sensitivity Indexes. The case study provided in (5) 

demonstrated that this tool can properly identify the most influential parameters from a 

computationally expensive model, for which other quantitative SA techniques are not feasible to be 

applied at the beginning. The second method adopts Sobol indices (7) calculated on a kriging 

approximation of the simulation model. This method has been presented in (8) and is based on the 

recursive use of the DACE tool to obtain a robust kriging emulator. Effectiveness of the method has 

been proven in (8) where the authors show that Sobol indices calculated on the kriging emulator 

(based on 128 and 512 model evaluations) achieve approximately the same value than those calculated, 

following the procedure described in (7), on almost 40.000 model evaluations. 

The benchmarking exercise was carried out on the same case-study presented in (8), namely, on 

the five “toy” networks shown in Figure 1 and simulated using the mesoscopic version of the 

AIMSUN model. Seven model parameters were considered in the analysis, and, in both methods, 512 



model evaluations were used. The SA was then carried out on four different model outputs calculated 

locally and globally (for a total number of SA ranging from 16 to 52 depending on the network). 
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Figure 1. Layout of the five test networks. As the layout changes, the effect of the different 

parameters on the outputs changes as well.  

Preliminary results show that both methods were able to identify, to a good degree, the non-

influential parameters. Furthermore, the kriging-based method was also able to provide a reliable 

estimation of first order and total order sensitivity indices, thus allowing a more powerful insight into 

the input-output relation of the model. The reliability of a kriging meta-model, however, is expected to 

suffer from the higher dimensionality of the model itself. The experience carried out therefore 

suggests the following rule-of-thumb for the sensitivity analysis of computationally expensive traffic 

simulation models: when the number of parameters is lower than 15-20, kriging-based SA should be 

preferred. Conversely, when it is higher, the quasi-OTEE method should be adopted since an ill-

defined kriging meta-model could lead to misleading results in the analysis. 
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Emission of chemicals is increasing over years and the related impacts are greatly influenced by 

spatial differentiation. Chemicals are usually emitted locally but, due to their physical-chemical 

properties and persistence, may exert both local and global impact. Besides, variability of 

environmental parameters of the emission compartment may affect the fate and the exposure up to 

orders of magnitude of difference. In the scientific community, there is continual debate whether the 

exclusion of spatial information in applications such as ERA (Health and Environmental Risk 

Assessment) and LCA (Life Cycle Assessment) may imply misleading results, influencing the 

decision on products environmental risk and performance. In order to point this aspect out, several 

spatially resolved multimedia models have been developed at various resolutions for calculating 

transport and fate of chemicals (1,2). These models allow assessing the distribution and fate of 

chemicals in the environment after their emissions, on the basis of chemical (viz. physical chemical) 

and landscape related properties. Unfortunately, addressing spatial differentiation at high resolution 

requires significant efforts both in terms of data requirements and of computational capacities (usually 

not available among practitioners). For this reason, the models adopted so far are mainly simplistic 

box models in which the concept of spatial differentiation is based on the scale/resolution (cell, 

country, basin). This approach, however, may reduce the uncertainty of the assessment to the extent in 

which the “box” is really representative of the removal/transport processes. Another approach is based 

on archetypes, namely the combination of parameters leading to a certain scenario whose pattern of 

variability is predictable. 

In the present work, we propose a novel approach in which emission archetypes are defined on the 

basis of the quantitative results achieved by means of a global sensitivity analysis of a complex spatial 

model. The emission archetypes are built in order to cluster combination of parameters leading to 

similar behavior in the removal rates of a chemical from the environment. 

In particular, global sensitivity analysis techniques have been applied to the Multimedia 

Assessment of Pollutant Pathways in the Environment model (MAPPE) (3) with two aims: to assess 

the variability in removal rates, focusing on the relative influence of substance properties and of 

environmental characteristics; to support the development of chemical specific and compartment 

specific archetypes. Global sensitivity analysis aims at understanding the relative importance of the 

uncertain inputs in determining the variable of interest. Several techniques can be fruitfully exploited 

to analyse the sensitivity of a model. In the present paper, we focus our attention on variance-based 

methods, in which the variance of model outputs is considered as a proxy of their uncertainty. Two 

different analyses are carried out: (i) sensitivity analysis of environment specific inputs (with the 

chemical-specific inputs considered as fixed assuming the values corresponding to four different 

chemicals); and (ii) sensitivity analysis of environment and chemical specific inputs. 

Table 1 presents a summary of the results. Chemical-specific properties are predominant with 

respect to environmental ones. However, once the chemical has been defined, the value of the removal 

rate is mainly affected by the wind speed, the precipitation and the type of land coverage.  

These results suggest the possibility of basing emission archetypes on climatic zones rather than 

on geo-political characteristics (e.g. continents, countries) (4). This hypothesis is tested by evaluating 

and comparing the distributions of the air removal rate within different climatic zones (considering the 

Koppen-Geiger Climate Classification, 5) and within different continents. 

 



Air Compartment 

Chemical category 
Key parameters for archetypes  

(Removal rate) 

Key parameters for archetypes  

(Removal rate order of magnitude) 

Overall Chemical, P, ABL Chemical, P, U10 

Hydrophilic  P, ABL  P, ABL 

Lipophilic  U10, P, ABL, OC, Cov  U10, P, ABL, OC, Cov 

High volatility  Cov, U10, ABL  U10, Cov, ABL 

Multimedia  U10, Cov, ABL, (T) U10, Cov, ABL, P, (T) 

Table 1: Key environmental parameters for different chemical categories as resulting from the sensitivity 

analysis of the MAPPE model  

The comparison is based on the distributions of the kurtosis of the different distributions as shown in 

Figure 1. From the Figure it is clear that, overall, the climate-based approach is able to provide 

removal rate estimations with lower uncertainty if compared with the continent-based distributions 

(the higher the kurtosis the narrower the distribution). Further research is however still necessary as 

the uncertainty in the removal rate calculation from climate-based archetypes is, in the authors’ 

opinion, still too high. 

 
Figure 1: Kurtosis distributions for the distributions of kair from different combinations of chemicals and 

geographic zones (5) 
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Reliable Based Design Optimization using k-sigma method and local sensitivity 
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INTRODUCTION 

This paper presents a method and a tool for solving reliability-based design optimization (RBDO) 
using local sensitivities, and is applied to a nano magneto-mechanical system. The RBDO problem �[1] 
is formulated as equation (1) where {P(Hj(X)�0)�PHj} is a reliability constraint involving the 
stochastic vector X modeling the uncertainties inherent in the model, and PHj is the maximal 
probability allowed. The solution of RBDO problem is not easy, even for simple models, because we 
must simultaneously solve the optimization problem and evaluate the failure probability. A first 
approach uses a double loop, one for the constrained optimization problem, and another inside the first 
one for failure probability using for example Monte-Carlo simulation. This approach is very simple to 
implement and gives accurate results. But it is not applicable in practice due to high computation time. 
Other methods approximate the reliability index by using First/Second Order Reliability Method -
FORM/SORM �[2]. A review of existing methods is proposed in the literature �[1]. 

A DECOUPLED METHOD FOR SOLVING RBDO PROBLEM 

In equation (1), design parameters are the mean of stochastic vector X (hyperparameters in the case of 
a normal distribution). These design parameters can vary in a rang fixed by xmin and xmax. The failure 
probabilities, or the probabilities of the inequality constraints Hj(X) (j=1,…,m) have to be satisfied at 
the optimal point. In order to simplify this probability evaluation, the decoupled method transforms 
these constraints from the stochastic domain (equation (1)) to the deterministic one (equation (2)) �[1]. 
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)(H j xσ  is the standard deviation of the constraint functions Hj(X) and k� is the coefficient related to the 

level of reliability. In this study, we will consider all the inputs independent and governed by a normal 
distribution. The RBDO problem becomes therefore a standard optimization one, reporting stochastic 
operations to the evaluation of the standard deviation. Many solutions are available to approximate the 
standard deviation like Monte Carlo simulation (too time consuming), unscented transform, etc. On 
the one side, these direct methods require minimizing the number of calls to the model evaluation. On 
the other side, indirect methods may use Monte Carlo simulation with a very light model based on 
response surface [5]. In this work, we are investigating efficient direct methods since it is generally 
very hard to obtain an accurate response surface when parameter space dimension is high.  

USE CASE: NANO MAGNETO-MECHANICAL SYSTEM  

Our use case is the reliable optimization of a magnetic nanometer switching device which modeling is 
described in �[3]. The design specifications are to find the position and the size (minimal) of magnets 
subject to constraints on the contact force and the contact length. The positions and the sizes are 
defined by 4 design parameters considering a total of 19 stochastic variables (19-4=15 with fixed 
hyperparameters). 

GLOBAL SENSIVITY ANALYSIS 

In order to estimate the influence of each parameter on the model, several sensitivity studies have been 
done. First of all, a global study is done in order to check the influence in the overall range of variation 
of each parameter. The application of the Morris method has led to the identification of 8 influent 
parameters. In order to dissociate the individual effects from the interaction effects, a Sobol analysis 
has also been done leading to nearly the same ordering than Morris one.  



LOCAL SENSIVITY ANALYSIS 

The analysis can be local, around a given set of parameters value. 
)(H j xσ  can be approximated directly 

from a model linearization. Indeed, Jacobian of our model can be computed by composition of 
symbolic differentiation and automatic differentiation �[4]. Jacobian matrix is of size (n x m) (m is the 
size of model output vector). Depending on n and m values comparison, a forward or a reverse 
(respectively, tangent or adjoin) method is preferred. In the general case, m is greater than n, so a 
reverse approach is preferred. In this case, the Jacobian computation is faster than finite difference
approach. This local sensitivity approximation has been compared with classical global sensitivity, 
leading to the same 8 influent parameters. Furthermore, a global sensitivity can also be performed 
using this Jacobian [6]. 

GRADIENT BASED OPTIMIZATION 

The sensitivity information allows sorting parameters regarding their influence. But, in our approach,
the sensitivity information is also crucial during an optimization process, in order to guide the 
algorithm to find the optimal reliable solution. Then, we choose to compute the standard deviation σy

using finite differences in order to keep exact Jacobian computation to the optimization algorithm. 
From the classical forward finite differences, the partial derivatives of σy are given by the following 
equation (3), in which σy|xi is the standard deviation of the y output, considering only xi input variation. 

��
==

�
�

�

�

	
	




�

∂

∂
=

�
�

�

�

	
	




�

∂

∂
=

∂

∂ n

i j

xy

xy

y

n

i j

xy

xy

yj

y

xxx

i

i

i

i

11

1
2

2

1 σ
σ

σ

σ
σ

σ

σ
     (3) 

We have then performed the optimization using the SQP algorithm in which constraints using k-sigma 
approach are taken into account. The following table check the results for k-sigma=2 using a Monte 
Carlo simulation (10000 runs, 19 parameters with 5% uncertainties). 

MC µ MC σσσσ kσσσσ=2 (based on MC) kσσσσ=2 (from optim) 

Contact length [nm] (>=300) 347.6 25.06 [297.48, 397.72] [300, 398.52] 
Contact force [10-8N] (>=2) 3.6 0.42 [2.76, 4.44] [2.87, 4.618] 
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CONCLUSIONS 

In this work, we have proposed an implementation of RBDO based on k-sigma constraints and a local 
sensitivity approximation. This approximation, which remains valid for reasonable uncertainties (less 
than 10%), allows to compute the standard deviation as well as its Jacobian to perform gradient based 
RBDO. A tool implanting this strategy has been developed and is able to add the standard deviation 
computation as well as its Jacobian from a black box model. Our methodology and tool has been 
applied on the reliable design of a nanometric magnetic switch. 
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Compact models (CMs) are extensively used in transistor-level digital-circuit design and verifi-
cation. These models are presented by equations based on fundamental solutions of differential
equations describing the main physical processes in circuits. Usually these equations have more
than one hundred inputs. Compact models are used to simulate circuits with non-identical devices
(transistors). This is equivalent to choosing different values for corresponding parameters of each
transistor in circuit. It is necessary the distribution of the parameter under consideration to be
known in order to choose a particular value. The distribution is determined by fitting against a
statistical set of electrical characteristics obtained from physical device simulation. Usually the
number of transistors in a microchip is more than 106. On the other hand, the smaller transis-
tors become, the more atomic-scale imperfections will affect their performance. That is why the
following questions are reasonable: 1. What is the most suitable (and minimal) set of parameters
to choose in order to predict the performance of corresponding transistor/circuit/microchip in a
most accurate way? 2. How to classify the elements in this set?

The statistical variability in modern Complementary Metal–oxide Semiconductor (CMOS) tran-
sistors is introduced by the inevitable discreteness of charge and matter, the atomic scale non-
uniformity of the interfaces and the granularity of the materials used in the fabrication of integrated
circuits [1]. This statistical variability means that circuits built from billions of transistors with
individually-unique properties may not perform as well as expected, despite being manufactured
in an identical way. The statistical extraction of compact model parameters done by direct fitting
to a statistical set of physically simulated characteristics is presented in various papers [2, 7].

In this work, the threshold-voltage-based BSIM4 compact model (http://www-device.eecs.berkeley.
edu/∼bsim3/bsim4.html) is under consideration. An initial sensitivity study of statistical variabil-
ity with respect to four input parameters has been done: Vth0 (basic long-channel threshold voltage
parameter), U0 (low-field mobility parameter), Rdsw (basic source/drain resistance parameter),
Dsub - drain-induced barrier-lowering (DIBL) parameter.

Variance-based techniques for global sensitivity analysis have been applied in the particular case
study. The input data analised has been obtained during runs of the mathematical model BSIM4.
A detailed analysis of metamodeling procedure in this particular case has been done. The Sobol
method is one of the most often used variance-based methods [5]. An important advantage of this
method is that it allows to compute not only the first-order indices, but also indices of a higher-
order in a way similar to the computation of the main effects. The problem of providing global
sensitivity analysis applying Sobol approach (and its modifications [4,6]) consists in evaluating
total sensitivity indices, and in particular Sobol global sensitivity indices of corresponding order.
It represents a problem of multidimensional integration.

As a first step numerical tests to compute sensitivity measures are performed by the sensitivity
analysis software SIMLAB v2.2 (http://simlab.jrc.ec.europa.eu/). The results allow to classify
input parameters by their importance. The most important parameters are: Vth0 and U0. The
main effect and the interaction effects has been taken into account. Some unacceptable negative
values of sensitivity indices have been obtained (see Figure 1). That is why a subset of three inputs
is studied where the input with a negligible influence has been excluded. The results show that the
classification of inputs in this case is similar to the first one. Based on the conclusions resulting
from the initial sensitivity study of the problem under consideration, two main issues should be
taken into account in the next stage: distribution of input parameters and efficient approaches for
model sensitivity study with dependent variables. Numerical study has been performed for both
cases - uniform and normal distribution of inputs. An approach for estimation variance-based
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Sobol indices 

   y  y-Closed  

         x1 0.359418 0.359418  

         x2 0.047362 0.047362  

         x3 0.008886 0.008886  

         x4 0.017300 0.017300  

      x1,x2 0.290449 0.697229  

      x1,x3 0.014991 0.383295  

      x1,x4 0.165470 0.542188  

      x2,x3 -0.00857 0.047677  

      x2,x4 0.011997 0.076659  

      x3,x4 -0.00507 0.021117  

   x1,x2,x3 0.022358 0.734893  

   x1,x2,x4 0.047931 0.939927  

   x1,x3,x4 0.011986 0.572982  

   x2,x3,x4 8.92e-005 0.071994  

x1,x2,x3,x4 0.015403 1.000000  

   Total x1 0.900432   

   Total x2 0.418538   

   Total x3 0.049705   

   Total x4 0.255231 
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Figure 1: Some results from sensitivity studies of BSIM4 compact model.

sensitivity indices for models with dependent variables presented in [3] has been applied here.
Sensitivity indicators have been estimated by Monte Carlo approaches. A comparison of numerical
results obtained by sensitivity analysis approaches [4] for both cases (correlated and independent
inputs) has been done.
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Context  

To optimize the whole life cost of its nuclear fleet, EDF has developed an asset management 
methodology. A part of this methodology treats with exceptional maintenance tasks strategies. To help 
the decision maker to choose the best strategy (how many times do we need to realize exceptional 
tasks, when,...?),  EDF has developed a dedicated tool (described in Figure 1) based on Monte-Carlo 
simulation to compute many technical economic indicators among which the density function of the 
Net Present Value (NPV) is the most relevant.  

This tool leads to an important simulation time and requires many input data that are surrounded with 
uncertainty: 

• Reliability data : generally there isn’t enough (or sometimes not any) feedback data to evaluate 
reliability model parameters; 

• Economic data : economic indicators and duration of Maintenance tasks remain on several 
hypothesis that can be modified; 

• Other data: uncertainty on operating time of power plants, maintenance tasks dates, etc. 

Event model 
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corrective maintenance
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Figure 1 : EDF valorization of maintenance strategies tool description

In order to reduce the output uncertainties, EDF needs to understand the influence of variables and 
their interactions on the NPV values. The main objectives are then to quantify 

• The non-influent variables that can be fixed without consequences on the output uncertainty, 
• The most influent input variables: variables to be fixed to obtain the largest reduction of the 

output uncertainty. 



Objective 

The problem of sensitivity of  NPV is recently discussed in papers in the operations research literature 
(see [2]).  The present work presents the use of factorial fractional designs [1] to treat this problematic, 
taking into account different sort of output as mean, standard deviation, mode or distribution of NPV.
We will briefly introduce factorial fractional designs and their use in a sensitivity analysis context.  

The originality of this works stands in the fact that the model output is not a scalar value but a density 
function. We will discuss which criteria can be used to transform this functional output problem in a 
scalar output one. We will test different standard distances between two density functions. 
  

We finally will present a numerical application based on a real study that optimizes the replacement of 
a stator winding of an EDF power plant. 
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The lithography is one of the key steps in the fabrication of integrated circuits. It consists in 

transferring the geometric patterns that represents each level of the circuit into a resist on a substrate. 

As technology advances, the dimensions of these geometric patterns become smaller and smaller, 

requiring improvements on the precision of the lithography techniques. One possible candidate to 

address future nodes (below 16nm) is electron beam lithography. If multiple electron beam systems 

significantly increase the throughput to meet industrial needs, it can be the tool of choice. Nevertheless 

using a chemically amplified resist (CAR) is mandatory even for systems with a large number of 

beams. Achieving dense sub 20 nm patterns with CAR is still a challenge as proximity effects degrade 

the contrast of the aerial image. Bridging, shape rounding or partial development are typical 

degradation in the desired final pattern shape. Proximity effect correction (PEC) is needed in order to 

properly delineate dense features as well as meet the required CD uniformity. The correction will even 

out the non-ideal electron energy deposition using a proper adjustment of the dose assigned to each 

pattern. Model based PEC requires computing the electron lithography process comprising at least the 

electron deposition inside the resist as well as the resists behavior under electron exposure. The 

electron energy deposition is calculated using a convolution approach. The impulse response of the 

electron beam, which is called PSF (Point Spread Function), is convoluted with the exposed pattern to 

compute the 2D repartition of electron energy deposited in the resist. Therefore, the quality of a 

correction is highly dependent on the quality of the PSF model employed and the accuracy of its 

parameters. The sum of Gaussian functions commonly employed for PSF models is shown in 

(1). 

PSF(x) =  

 

(1) 

 

There are other empirical models available in the literature, as well as several different approaches to 

obtain the appropriate value for their parameters [1-2]. However, those techniques are usually limited 

to certain model characteristics, present some restriction in terms of complexity, or require a 

prohibitive number of measurements.  

One of the most employed strategies to determine the parameters of a PSF model is based on 

experimental data obtained from measurements on a wafer or mask. The constraint in this approach is 

to propose a reasonable number of measurements, due to constraints of writing time and metrology 

time. Figure 1 shows several examples of patterns that may be used. 

The selection of the patterns is an important step for the model calibration procedure since it impacts 

directly the quality of the parameter values extracted during the optimization. This impact is due to the 

fact that the patterns used must explore the characteristics of the model, being sufficiently 

comprehensive to include the situations where the model accuracy is required to obtain a precise 

simulation/correction.  

Therefore, it is crucial to select the patterns that are more sensitive to the influence of all parameters 

on the model. The strategy employed to select those representative patterns is the Sensitivity Analysis. 

This method indicates the importance of individual parameters’ contribution to the model result. In 

this sense, for each calibration pattern evaluated, the sensitivity of the metrology simulation result over 



it is analyzed. The Sensitivity Analysis method used was the calculation of the Global Sensitivity 

Indices [3,4] both of first order and total order. Global sensitivity indices can be efficiently computed 

by Variance-based methods [3], implemented using quasi-random sampling algorithms [4,5]. Figure 2 

shows one example of evaluation of the first order global sensitivity index for 128 patterns for the 

three parameters of a two Gaussian PSF. Observe that there are some with high sensitivity to β and 

several with high sensitivity to η, but none very sensitive to α alone. 

 

 
Figure 1. Samples of test patterns (in blue) and the indication where the measurement is taken (in red). (a) line between pads; 

(b) isolated inverted line; (c) line gratings; (d) contact blocks; (e) tip-to-tip blocks; (f) isolated line. 

 

 
Figure2. First Order Global Sensitivity Index values for 128 different patterns(by changing the dimensions of the shapes 

presented in figure 1(a) for a two Gaussian PSF model 

Another important consideration is the impact of the process variability and the metrology noise over 

the Sensitivity Analysis. It is known that some patterns may suffer of a higher variability than others 

(from less than 1nm in the stable cases up to 3 or 4 nm in the most instable ones). Determining the 

impact of the variation of the measurement over those patterns in the final model calibration is 

important in order to determine the most robust set of patterns for this purpose. For this purpose, 

Uncertainty Analysis is employed. The main goal here is to find a compromise between the amount of 

uncertainty on the parameter choice related to a given pattern and the information it provides to the 

calibration. 
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Multi-run simulation environments – requirements, development and application 

in climate impact research  

MICHAEL FLECHSIG 
THOMAS NOCKE 
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Potsdam Institute for Climate Impact Research, 14476 Potsdam, Germany 

A simulation environments is a software tool that supports experimenting with simulation models 
normally developed outside the environment. Formally, we consider the implementation of a 
mathematical model M: y = F(x) that transforms a k-dimensional input vector x of factors into an 
output (vector) y [1]. Often, the input vector x represents parameters, initial or boundary values of the 
model. For a multi-run experiment a sample is drawn from the factor space in a way that fits to the 
experiment goal and the model is run for all sample points. 

In climate impact research model development and application are the main methodologies besides 
data analysis and integration. Consequently, evaluation of model results is an important task and 
uncertainty and sensitivity quantification due to the variability of model factors have been increasingly 
requested by policy and decision makers in recent years (e.g., [2] and [3]). Typically, simulation 
models are implemented in programming languages rather than modelling systems, they are non-
linear, time consuming and produce large volume of multi-variate and multi-dimensional output. 
Besides validation tasks, simulation experiments are mainly performed for uncertainty, sensitivity, 
scenario and re-analyses. For this class of models and tasks methodical challenges arise from (i) 
integrating and interfacing models implemented in different languages, (ii) sensitivity and uncertainty 
studies in high-dimensional factor spaces, (iii) comparing experiments performed under different 
settings, and (iv) computation of experiment-specific measures during experiment analysis. 

Besides supplying adequate model-independent / model-free experiment designs for non-additive, 
non-linear, and non-monotonous models (e.g., qualitative and quantitative, deterministic and 
probabilistic and Bayesian, local and global designs, [4], [5]) the open architecture of a simulation 
environment is an important feature for its acceptance. This mainly includes (i) a model interface to 
import factor values into the model and to export model output to the environment, (ii) load 
distribution for such multi-run experiments where the factor space can be sampled before simulation 
and where all single runs are independent from each other, (iii) a post-processor to navigate the 
coupled factor – state space and derive measures, and (iv) an interface to visual data analysis tools to 
visualize the measures. 

SimEnv [6] is a multi-run simulation environment with the focus on uncertainty, sensitivity and 
scenario analysis of multi input / output models that meets most of the above criteria: Experiment 
design is based on pre-defined experiment types for factor spaces of any dimension that only have to 
be equipped with numerical values. Experiment types cover a variance based technique, a Monte Carlo 
experiment, local sensitivity analysis, an improved Morris design, (fractional) factorial experiments, 
Bayesian calibration, and a one-criterial optimization. For probabilistic methods, built-in marginal 
distributions are supplied for pseudo, stratified and quasi random sampling. 
SimEnv comes with a simple model interface that requires only minimal modifications of C/C++, 
Fortran, Java, Python, Matlab, Mathematica, GAMS or shell script model source code by a SimEnv 
function call for each factor and each output field under investigation. Multi-variate / -dimensional 
experiment output is stored in self-describing NetCDF data format.  
The environment allows for different flexible load distribution strategies of the individual single runs, 
supporting multi-core processor machines, experiments in background as well as load distribution to 
compute clusters, the latter with interfaces to batch queue systems. 



In experiment analysis chains of built-in and user-defined operators are interactively specified and 
applied to experiment output over the factor space to derive secondary experiment output in general 
and uncertainty / sensitivity measures from secondary output if appropriate. External (reference) data 
and output from other SimEnv experiments can be embedded for model – data and model or 
experiment comparisons. Again, analysis output is stored in NetCDF format.  
SimEnv is coupled to the visualization system SimEnvVis [7] for interactive explorative visual data 
analysis. It exploits metadata from the experiment design and the experiment post processor to select 
appropriate visualization techniques. One of the advantages of SimEnvVis is the ability to cope with 
multi-run datasets by special visualization techniques like parallel coordinates and graphical tables.  

SimEnv has been used in climate impact research for many problem settings, among others, 
uncertainty and sensitivity analyses [8], [9], and uncertainty quantification in model intercomparisons. 
[10]. 

The paper closes with consequences for further investigation into methodology, design and 
implementation of simulation environments. 
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Introduction 

In March 2011, the Swedish Nuclear Fuel and Waste Management Co., SKB, applied for a licence to 
build a final geological repository for spent nuclear fuel at the Forsmark site, situated around 70 miles 
north of Stockholm, Sweden. A key component in the licence application is an assessment1 of the 
long-term safety of the repository. Probabilistic radionuclide transport and dose calculations are at the 
core of the analysis. A number of sensitivity analysis methods, e.g. standardised rank regression and 
cobweb plots, were applied to the calculated dose distributions. The numerical radionuclide transport 
models used in the assessment can, for several of the analysed scenarios, including the most important 
ones, be well approximated by simple analytical expressions,2 that use the same input data 
distributions as the numerical models. This opens the possibility for additional sensitivity analysis 
methods that are explored in this paper: 

1. The very short execution time of the analytical model facilitates the calculation of variance based 
sensitivity indices of all orders, for this problem with five input variables.  

2. Based on the analytical expressions, a tailored regression model is derived and shown to make 
good predictions of the results obtained with the numerical transport models, i.e. the analytical 
model is utilised to derive a sensitivity analysis method for the more complex numerical model. 

Variance based sensitivity indices of all orders 

The simplified analytical model requires of the order of one microsecond per realisation if only the 
peak dose, which is the primary entity in the demonstration of compliance with Swedish regulations, is 
considered. There is thus a good potential for these simplified models to be efficient in the
determination of variance based sensitivity indices. The full numerical calculation includes a number 
of radionculides that contribute insignificantly to the total dose and these and their corresponding 
uncertain variables are, therefore, not considered in the following. The analytical expression for the 
dose dominating radionuclide Ra-226 is, somewhat simplified, the following, where the uncertain 

input variables are DFuel, tFailure, F, Ra
dK and De: 
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For obtaining sensitivity indices, formula (b) in Table 2 of Ref. 3 for first order indices was taken as 
the starting point. Analogous formulae were derived so that, in addition to the first order indices, also 
all higher order indices were obtained. Application of these formulae yielded e.g. all sensitivity indices 
of a 5- -function with all a i = 0 (see, e.g., Ref. 3 Appendix A) within about one 
minute of computation time, with input data sampled4 with a Quasi Monte Carlo scheme. 220 model 
realisations were executed in this example for each of the 25

realisations. The relative errors were around one percent for all indices except for the 5th order where it 
was a few percent. The precision was readily increased with additional realisations. Since all 
sensitivity indices are calculated, total order indices are obtained as sums of relevant first and higher 
order indices and do not have to be calculated separately. Additional schemes to the mentioned 
formula in Ref. 3 were tried as starting points, yielding similar or lower efficiency.    

The method was applied to the radionuclide transport problem and yielded all sensitivity indices up to 
and including the 5th order within a few minutes of computation time. The results point to the same 



important variables as obtained with e.g. standardised rank regression. The sum of the fist order 
indices of the three most important parameters, DFuel, tFailure and F, is 0.46. The sum of the seven 1st,
2nd and 3rd order indices including only these three most important variables was 0.88, i.e. they account 
for 88 percent of the total variance. The details of this latter information do not emerge if only first and 
total order indices are determined. It is clear from these results that variable interaction effects give 
significant contributions to the output variance and this is expected from the nature of the analytical 
expression above. It is, moreover, not clear that the higher (4th and 5th) order indices provide meaning-
ful information about the real system, considering the simplified nature of the analytical model. 

Tailored regression models 

The understanding and mathematical formulation of the simplified transport models2 used in the dose 
calculations were utilised to construct a number of tailored regression models that include successively 
more input variables. Such models with two to five variables were constructed for the peak dose of 
Ra-226, the radionuclide that dominates most of the numerical model realisation. The highest order 
model yields an R2-value of 0.99 when regressed on the results of the numerical transport models, see 
Figure 1, that shows both the regression model expressions as an insert, and the regression results. 
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Calculated Ra-226 peak dose [ Sv]

Blue: log(DFuel·t) + C   R2 = 0.13
Green: log(DFuel·t) - cF0.5 + C   R2 = 0.84

Red: log(DFuel·t) - cF0.5·Kd
0.25 + C   R2 = 0.94

Black: log(DFuel·t) - cF0.5·(Kd·De)
0.25 + C   R2 = 0.99 

Figure 1. Four tailored regression models, based on successively more variables, for the Ra-226 peak 
dose. For example, the black dots show the good agreement of the results of a five-parameter tailored 

regression model with those of the numerical transport model.

Conclusion 

A complex model that is well approximated by a simple analytical function has facilitated i) a full 
exploration of variance based sensitivity indices and ii) the development of tailored regression models 
that is used for sensitivity analysis of the complex model. Both methods illustrate how input variable 
uncertainties contribute to the output variance. 
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 The goal of data assimilation is to correct in an optimal way the system forecast using the given 

observations. For meteorological or oceanic numerical models, implementing standard filtering 

algorithms like Kalman filter is  an insurmountable task due to very high dimension of the resulting 

system state (order of 10^6 - 10^7).  

 

 We describe in this paper a new approach for the design of a suboptimal filter called as a Prediction 

Error Filter (PEF) [1]. In the PEF, the gain subspace  is either constructed in a subspace of leading 

Schur vectors  if the system is of low dimension or  is  supposed to be  given in a prescribed form, 

with some parameters (vertical error covariance matrix, horizontal correlation length ...) to be 

estimated from the patterns  of the faster growing prediction errors (PE). These patterns, simulated by 

applying the orthogonal iteration algorithm to the system dynamics, will tend to the real  leading 

Schur vectors. A procedure for estimating the filter gain elements from Schur vectors will be 

presented. By this way the filter is automatically constructed from the numerical model, at low 

memory and computational cost.  

 

The PE sampling approach is proposed in order to have a possibility to well estimate the PE 

covariance matrix which is needed to initialize the filter gain. That is the first step in implementing the 

more advanced algorithm known as an adaptive filtering [2]. In the adaptive filter (AF) the 

optimization of the filter performance is performed by minimizing the mean PE for the system output 

with the control vector consisting of some pertinent elements of the filter gain. Advantages of such 

choice of control vector are : (1) Simplicity in selecting parameter intervals ensuring a stability of 

filter (hence stability of optimization procedure) for unstable  dynamical system; (2) Possible choice of 

control parameters on which the predictor depends linearly; (3) Optimization can be performed by a 

simultaneous perturbation stochastic approximation algorithm which does not require a development 

of adjoint code for a linearized system dynamics (i.e., it is possible to perform an optimization by 3 

time integrations of numerical model). 

 

 A number of numerical examples of filtering problems with dynamical systems, of  low and very high 

dimension (oceanic model), will be given to illustrate  the efficiency of the proposed approach. A 

sensitivity analysis of objective functions to control vector in an AF and in a variational data 

assimilation (VDA) approach will be given from which, for example, one sees that if for a strongly 

nonlinear Lorenz system, a cost function being a squares of PEs, results in a nearly quadratic function 

with respect to the proposed parameters in the filter gain, the sensitivity analysis does not lead to a 

positive conclusion on a possible existence of minimizer in the space of initial system state if we 

follow the VDA approach. 

 

 Performance comparison of the PEF and its adaptive version (optimal in the minimum prediction 

error sense) with other well known filtering methods, will be also presented.  
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The performance of two machine learning methods, artificial neural network (ANN) and 

support vector machine (SVM), for forecasting time series is considered an open issue for 

discussions among many authors in the literature. Hence, the purpose of this study is to 

characterize the capability of these two methods upon the autocorrelation basis. According to 

the training process, the historical data at time t-50, t-49,…, t-1 were utilized to predict the 

observation at time t while 50 training  vectors were deployed to train the database in each 

cycle (Fig. 1).  

 

 
Fig. 1 Prediction of Y at time t 

 

The number of training cycles used was 20,000 cycles and the forecasting error, minimum 

average percentage error (MAPE), was calculated after each learning cycle. For ANN, the 

neural network architecture used is the multilayer perceptron (MLP) and the training 

algorithm of MLP network employed to build models is the Broyden-Fletcher-Goldfarb-

Shanno (BFGS). On the other hand, the forecasting model based on the SVM approach is the 

regression type 1 with C=10.0, epsilon = 0.1 and the kernel is a radial basis function with 

gamma = 0.1. A statistical package, Statistica version 10, was utilized to facilitate the 

forecasting by these two methods. For generating data, the numerical simulation in this 

empirical research is based on the autocorrelated nature (stationary and non-stationary) of the 

data so the performance of ANN and SVM was compared with respect to the autoregressive 

integrated moving average (ARIMA) structure. Two classes of ARIMA models, ARMA (1, 1) 

and IMA (1, 1), as shown in (1) and (2) respectively, were utilized to simulate stationary and 

non-stationary processes. 

 

tttt aaNN qf -+= ++ 11 ; -1 < f < 1,-1 < q < 1,                                                                          (1) 
 

tttt aaNN q-+= ++ 11   ; -1 < q < 1,                                                                                             (2) 



where  Nt is the observation at time t 

  at is the random error at time t 

  f is the autoregressive coefficient 

  q is the moving average coefficient. 

Afterwards, the experimental results, MAPEs, were compared empirically by using the 2
k
 

factorial design because of its robustness. For stationary processes, three factors, A, B and C, 

were assigned to three influential factors, AR parameter (f), MA parameter (q) and methods 

respectively, while each factor was set at the low and high level as shown in Table 1. 

Similarly, all factors and their levels for conducting the experimental study of non-stationary 

processes are shown in Table 2.   

 

Table 1. Factors and levels for stationary processes 

 

 

 

 

 

 

 

Table 2. Factors and levels for non-stationary processes 

 

 

 

 

 
 

After the experiment, the results were analyzed by a statistical package, Design-Expert 

version 8, and the most appropriate model was chosen under these two conditions (stationary 

and non-stationary). The results indicate that these two machine learning methods have 

different performance under a specific scenario of autocorrelation.  Accordingly, when the 

process is stationary, ANN is a better choice than SVM. However, it turned out to be that 

SVM had obviously outperformed the ANN for non-stationary case. 
 

[Karin Kandananond; Rajabhat University Valaya-Alongkorn, 1 Moo 20 Paholyothin Rd., 

Prathumthani, Thailand 13180 ] 
[kandananond@hotmail.com ] 

 

Factor Low High 

A (AR parameter; f) -0.9 0.9 

B (MA parameter; q) -0.9 0.9 

C (Types of Methods) ANN SVM 

Factor Low High 

A (MA parameter; q) -0.9 0.9 

B (Types of Methods) ANN SVM 



7th International Conference on Sensitivity Analysis of Model Output, July 1–4 2013, Nice

Uncertainty and sensitivity analysis of land shares model over EU 27

Matieyendou LAMBONI

EC-Joint Research Centre, Institute for Environment and Sustainability, Italy

Renate KOEBLE

EC-Joint Research Centre, Institute for Environment and Sustainability, Italy

Adrian LEIP

EC-Joint Research Centre, Institute for Environment and Sustainability, Italy

I. Objective: The agricultural sector contributes to 9.3 − 10.6% of total greenhouse gas
(GHG) emission, excluding LULUCF, in the EU27 (EEA [1]) and there is a growing interest in
modelling environmental impacts of agricultural activities. GHG emission heavily depends on a
number of different biophysical characteristics, such as soil, landform, and climate (Lamboni et al.
[2]; Leip et al. [3]) as well as management factors like crop type and fertilizer application. For the
quantification of agri-environmental indicators and the estimation of GHG emissions, the distri-
bution of crop shares over the Homogenous Spatial Units (HSU) is required, as many indicators
depend on the local combination of land use and environmental conditions. These Spatial Units
should express highest possible homogeneity for important factors so that their characterizations
and results based on can be regarded as representative. In this paper, we quantify the uncertainty
of the prediction of the crop shares for each administrative region (NUTS2) based on land use
survey (LUCAS 2009), land use/cover maps (Corine 2006), climate (rain, temperature, vegetation
period), soil and topographical variables such as texture, organic content, sand, clay, slope, altitude.

II. Land Shares Model: We used a local multinomial logit model, as a statistical way
of downscaling the land use, to estimate the disaggregation function of spatial crops allocation
for each administrative region (NUTS2). Cross Validation combined with the F-measure (model
effectiveness) [4] were used to select the ”optimal” bandwidth during the process of estimation.
For each HSU (h) in a NUTS2, characterized by the variables (xh), the probability to find a land
use l is predicted like:

̂Pr(Yh = l) =
exp(β̂l‘xh)

∑L

l=1
exp(β̂l‘xh)

, (1)

where, β̂l is the vector of the weighted likelihood estimators for land use l in the NUTS2 and L is

the number of land use. ̂Pr(Yh = l) is no more than the predicted percentage of land l share in
the HSU and the total area of l share in the NUTS2 (Âl) is:

Âl =
1

H

H∑

h=1

exp(β̂l‘xh)

∑L

l=1
exp(β̂l‘xh)

×A, (2)

where H is the number of HSU in the NUTS2 and A is the area of the NUTS2.

In this model, the uncertain factors are β̂l, l = 1, . . . , L and we assume that the uncertain factors
β̂l, for each land use, follow a normal distribution with mean (respectively standard deviation) the
estimated value of the parameter (resp. standard deviation). This assumption is reasonable for
most of the NUTS2 regions because the selected bandwidth leads to more than 200 observations.
These distributions of β̂l are used as a priori distributions of the parameters of land shares model
in Bayesian approach where the unknown distribution of Âl is required.

III. Result: We used the land shares model in (2) to compute the distribution of land

shares Âl for each administrative region (NUTS2). First, we use a screening method [5] to select
the most influential parameters, and second, we quantify the uncertainty of land shares based only
on the most influential parameters. The model output, associated to the mean values of input
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Figure 1: Trends of barley shares from CAPRI (Blue), EUROSTAT (red) and predicted value
(point) at NUTS 1 level in UK. We will include information on the probability distribution of
estimated crop share.

distributions, is aggregated to a high level (NUTS1 level) to be compared with the trend of land
shares from CAPRI data and Eurostat data (Figure 1). In Figure 1, most of predictions follow the
trend of crop shares from the statistics.
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Let S be the prices process of d ∈ N∗ risky assets, and assume it is the solution of the following
stochastic differential equation on [0, T ] (T > 0) :

dSt = b (St) dt+ σ (St) dWt (1)

with a deterministic initial condition x ∈ Rd.

In their famous paper [3] published in 1999, by taking equation (1) in the sense of Itô for a
d-dimensional Brownian motion W , E. Fournié et al. studied sensitivities with respect to x, b and
σ, called greeks in finance, of an option’s price E[F (ST )]. By using Malliavin calculus, they proved
that greeks can be written E[F (ST )ϑ] for F only piecewise continuous and a weight ϑ ∈ L2.
About computation of greeks in the classical Itô calculus framework, see also E. Gobet and R.
Münos [4].

Assume that W is a d-dimensional Gaussian process such that the enhanced Gaussian process

in the sense of [2], Theorem 15.33 exists over it. Typically, a fractional Brownian motion with
Hurst parameter H > 1/4 satisfies that assumption.
With bounded coefficients, by taking equation (1) in the sense of rough paths introduced by T.
Lyons in 1998 ; the existence of sensitivities with respect to x and σ extends by assuming that F
is continuously differentiable such that ‖F (x)‖ < C(1 + ‖x‖)N and ‖DF (x)‖ < C(1 + ‖x‖)N for
two given constants C > 0 and N ∈ N∗. The regularity of the Itô map for equation (1) together
with recent results of T. Cass, C. Litterer and T. Lyons [1] on linear rough differential equations
driven by enhanced Gaussian processes are crucial.
Under technical assumptions on the Cameron-Martin’s space of W , satisfied by fractional Brown-
ian motions for instance ; the sensitivities of E[F (ST )] with respect to x and σ can also be written
E[F (ST )ϑ] for F only piecewise continuous such that ‖F (x)‖ < C(1+‖x‖)N , and a weight ϑ ∈ L2.
Malliavin calculus is crucial as in Itô calculus framework.

For example, the sensitivity of E[F (ST )] with respect to the bounded function µ is studied :

St = κ (Xt) ; κ : Rd
→ (R+)

d

dXt = b (Xt) dt+ σ (Yt) dB
H1

t

dYt = µ (Yt) dB
H2

t

where, BH1 and BH2 are two independent fractional Brownian motions.
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[3] E. Fournié, J-M. Larsy, J. Lebuchoux, P-L. Lions and N. Touzi, Applications of Malliavin Cal-
culus to Monte-Carlo Methods in Finance, Finance Stochast., 3:391–412, 1999.
[4] E. Gobet and R. Münos, Sensitivity Analysis using Itô-Malliavin Calculus and Martingales, and
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The use of Earth Observation (EO) data combined with land surface process models is at present 

implemented, or is being explored for obtaining spatio-temporal estimates of parameters characterising 

land surface interactions such as energy fluxes and surface soil moisture. These techniques aim to 

improve estimates of these key parameters by combining the horizontal coverage and spectral resolution 

of remote sensing data with the vertical coverage and fine temporal continuity of simulation process 

models. In this context, the European Space Agency (ESA) has funded the PROgRESSIon project
1
 which 

explores at a global scale the prototyping of energy fluxes and soil moisture from the synergy of 

SimSphere model with EO data from ESA-funded/co-funded instruments.  

SimSphere was originally developed by Carlson and Boland (1978) and considerably modified to 

its current state by Gillies et al. (1997) and Petropoulos et al. (2013). It belongs to a special category of 

deterministic models called Soil Vegetation Atmosphere Transfer (SVAT) models which provide in a 

detailed description of soil and vegetation canopy processes in a vertical profile representation and at a 

fine time resolution that is in good agreement with the dynamic timescale of the atmospheric and surface 

processes. SimSphere is a 1d model with a plant component and its underlying constraint is taken as the 

balance between all the energy fluxes at the Earth’s surface. The model simulates a number of variables 

characterising the continuous evolving interactions between soil, plant and atmospheric layers over a 24-

hour cycle, starting from a set of initial conditions given in the early morning. A review of the model use 

was provided by Petropoulos et al. (2009a), in which authors underlinedthat very few SA studies have 

been performed on the model despite the widespread use that is already made of it and its promising 

potential  for much wider assimilation by the community. In response to this requirement, Petropoulos et 

al. (2009b; 2010) performed a Global Sensitivity Analysis (GSA) on SimSphere based on a Gaussian 

process emulator (BACCO; Kennedy and O’Hagan, 2001; O’Hagan, 2006). For the first time, their 

studies made it possible to derive an estimate of the sensitivity of key model outputs characterising land 

surface interactions to all the model inputs and their interactions. .  

Briefly, the BACCO method is based on the use of the Gaussian Emulation Machine for 

Sensitivity Analysis (GEM-SA) tool, the development of which was funded by the National 

Environmental Research Council, UK. In the method, the uncertainty of the SA due to the emulator 

approximation is quantified by computing several statistical metrics. These include the “cross validation 

root mean square error”, the “cross-validation root mean squared relative error” and the “cross-validation 

root mean squared standardized error”. The first measure is the square root of the mean square error of the 

emulator prediction whereas the second is that value expressed as percentage. The third expresses the 

residual divided by an estimate of its standard deviation. In addition, the so called “roughness values” and 

                                                 
1
 More information at: http://due.esrin.esa.int/stse/projects/stse_project.php?id=148 [accessed March 1th, 2013] 



the “sigma-squared” parameters are estimated. The first describes how rapidly the output responds to 

changes in each input, whereas the second is the variance of the emulator after standardising the output. 

The basic SA statistical metrics output from GEM SA include the computation of the relative 

contributions of the main and joint effects (pairwise contributions only) of the input parameters to the 

overall output variance, as well as the total effects, definitions of which can be found for example in 

O’Hagan (2006). Details concerning the BACCO emulation process and the precise method are provided 

in Kennedy and O’Hagan (2000) and O’Hagan (2006).  

The present study aimed to perform a GSA on SimSphere in order to  further extend our 

understanding of the model structure and to establish its coherence, building on the previous analogous 

works conducted on the model. For consistency and comparability to these previous studies, the GSA 

implemented herein has also been based on adopting the BACCO method to develop an emulator. Yet, 

whereas previous SA studies on SimSphere using the BACCO were based on normal probability 

distribution functions (PDFs) assumption for the model input parameters, in our study a SA is performed 

assuming uniform PDFs. It also derives PDFs of the most sensitive model inputs directly from satellite 

imagery acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) imagine radiometer. Our findings, although largely comparable to previous SA studies on the 

model, showed that the PDF’s assumption can influence the absolute SA measures of the model input 

parameters in respect to the target quantity considered each time. Yet, the nature of the most significant 

inputs influencing the sensitivity of the examined outputs was not changed. The implications of our main 

findings are discussed in the context of the future use of the model including its synergy with EO data for 

deriving operationally key land surface parameters from space.  
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In many situations, a decision-maker is interested in assessing a set of m objects or 
alternatives Aj characterized simultaneously by n criteria or attributes, and defining a 
ranking able to synthesize the global characteristics of each object, for example, from 
the best to the worst. This is the case, for example, in the assessment of several projects 
through attributes such as cost, availability, environmental impact, among others. The 
behavior of each object, for every criterion, is quantified via “performance values” 
which can either be numerical or categorical. Several multicriteria decision techniques 
could be used to this aim [1], like ELECTRE [2], PROMETHEE [3], TOPSIS [4], to 
name a few. As a result of the assessment, for example, object Ak is ranked as the best. 
However, this object ranking, defined as the Base Rank, could be influenced by 
uncertain factors associated to specific criteria (for example, the criterion “cost of a 
project” could be affected by variations in the interest rate) or by decision-maker 
preferences (e.g., criterion weights). In this situation, the decision-maker could be 
interested in knowing what factors are responsible for a specific model behavior, e.g., 
what criterion weights affect the position of the object ranked as the best object in the 
base rank.
Several approaches have been proposed in the literature to evaluate the importance of 
factors in a model, given a specified behavior, like Monte Carlo Filtering [5], Regional 
Sensitivity Analysis [6], Generalized Likelihood Uncertainty Estimation [7] and Tree-
Structured Density Estimation [8].  
The problem addressed in this paper is related to describe the solution space associated 
to a given model behavior specification. For example, what are the values associated to 
each criterion that make Ak be ranked as the best object.  
The solution space could be a non-convex and/or sparse space. Approaches suggested in 
[9] or recently in [10-11] are able to extract an approximate hyperbox of the solution 
space, where factor variations are assigned independently (i.e., factors are “decoupled” 
[10-11] and the solution space is represented through intervals [x1_inf, x1_sup], 
[x2_inf, x2_sup], … and [xl_inf, xl_sup], l=n*m). The approach proposed in [9] 
requires an analytical model f(x1, x2,..,xl), while in [10-11] the model is considered as a 
black-box. In both approaches the widths of the factors could be associated to a 
sensitivity index.  
This paper proposes an approach based on the use of machine learning classification 
techniques [12] able to provide a description of the solution space, based on a set of “If-
Then” rules derived from model samples. Additionally, some data-mining techniques 
are able to extract the most important factor; others can detect non important factors 
while others can provide a numerical sensitivity index. However, factors in the solution 
space are not necessarily decoupled. 
An example related to a real decision problem (m=20, n=4, l=80) illustrates the 
proposed approach. Figure 1 shows the approximate probability distribution for the rank 
of each object considering the uncertainty of the 80 factors (based on 10000 samples). 
Objects 15 and 9 have the highest probability to be ranked in the first and second 
position respectively. This fact means that the ranking of both objects is very robust to 



uncertainty effects, considering the performance of the objects (in general, criterion 
weights (preferences) of specific multicriteria techniques could also be considered). 
Thirty one rules were obtained for the condition that objects 15 and 9 are ranked as the 
first and the second objects. This set of rules is able to correctly explain 96% of the 
samples. Additionally the techniques detect that factor x75 is the most important factor 
and there are 62 out of 80 non important factors (i.e., only 18 factors appear in the 
rules). Figure 2 shows some rules extracted for the “false” condition (i.e., objects 15 and 
9 are not ranked as the first and the second objects). Similar rules could be derived for 
the “true” condition. In any case, the decision-maker has additional information on 
what factors are responsible for achieving the desired condition (the typical goal of a 
Factor Mapping Setting [5]) and what are their possible values.  
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(x69 >= -0.17) and (x75 <= -0.32) 
and  (x74 >= -0.35) => false 

(x75 <= -0.32) and (x69 >= -0.21) 
and (x66 >= -0.31) and (x68 <= -
0.09) and (x19 >= 1080164) => 

false

(x75 <= -0.3) and (x78 >= -0.34) 
and (x69 >= -0.17) => false

Figure 1: Approximate probability distribution 
for the rank of each object (10000 samples) 

Figure 2: Some rules extracted 
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In this paper, we offer to discuss the use of the “map labelling” method to estimate variance-based 

sensitivity indices for spatially distributed inputs. More precisely, we focus on i) the convergence of  

indices estimates when the number of randomly generated input maps increases; and on ii) the use of 

two technical tricks to lower the cost of the analysis in terms of CPU requirements. 

 

Variance-based global sensitivity analysis (VB-GSA) is used to study how the variance of the output 

of a numerical model can be apportioned to different sources of uncertainty in its inputs [1]. VB-GSA 

is recognized as an essential component of model building, but it is seldom applied in Earth and 

Environmental Sciences, partly because most of the numerical models developed in this field include 

spatially distributed inputs (maps). However, a number of authors have recently introduced methods to 

compute variance-based sensitivity indices associated to one or several spatially distributed inputs, 

that possibly exhibit spatial auto-correlation [2,3,4]. 

 

The « map labelling » method [2] is one of these methods. It allows calculating first and total-order 

sensitivity indices associated to an uncertain input map, for the case of a numerical model with a low 

CPU cost. Let consider a numerical model F, with k scalar inputs U1 … Uk and a single spatially 

distributed input {Z(x), x in R
2
}. We assume that the uncertainty on Z(x) can be simulated by some 

stochastic process P (e.g., a geostatistical algorithm), that may account for spatial auto-correlation or 

any complex structure of variability in Z(x). The steps of the « map labelling » approach are as 

follows: 

i) generate n equiprobable random realizations of the uncertain input map Z(x) and store 

them in some permanent disk space; 

ii) label each realization with a unique integer 1 � l � n; 

iii) sample random label L along with other scalar inputs Uj to generate an input matrix, 

following for example the procedure described in [1]; 

iv) evaluate model F for each line of the input matrix: on line i, the sampled value l
(i)

 of 

random label L indicates that the l
(i)

-th realization of input map Z(x) should be used; 

v) from the output vector, calculate the first and total-order sensitivity indices SL and STL of 

random label L. These indices are taken as a measure of the influence of uncertain input 

map Z(x) on the variance of model output. 

 

In practical cases, the use of the “map labelling” method is limited by the number n of random map 

realizations that can be generated and stored on the computer. The choice of size n is thus driven by 

constraints of time – generating random realisations of Z(x) using stochastic process P may be CPU 

intensive, and constraints of disk space – storing a large number of spatially distributed data may be 

computationally intractable. The size n will influence the precision and accuracy of sensitivity indices 

estimates, but also the CPU cost of the analysis. 

 



To investigate this issue, a first part of this paper is devoted to a numerical study of the convergence of 

sensitivity indices estimates SL and STL when the number n of random input map realizations 

increases. Results on a simple analytical test case show a bias towards an under-estimation of 

sensitivity indices SL and STL when n is too small. The efficiency of a n/(n-1) corrective coefficient is 

tested to correct for this bias. 

 

Next, in a second part of the paper, we discuss the use of two simple technical tricks that can lower the 

cost of the analysis. The first trick is related to the cost of loading one realisation of Z(x) in the 

memory of the computer code: if this cost is high, then it is interesting to try and reduce the number of 

times each realization is loaded in the VB-GSA process. To do so, for each “base-point” of Sobol' 

sample in the space of the model inputs [1], one single random realization of Z(x) is loaded in the 

memory of the computer code and it is re-used for all the (k+1) subsequent model runs related to the 

same base-point. The second trick is related to the cost of storing a large number of random 

realizations of Z(x) in the disk space. The idea is that these random realisations of Z(x) can be 

generated “on the fly” for each base-point, then discarded – instead of pre-generating all of them 

before running sensitivity analysis. Hence, the analysis would not require a large data storage capacity 

any more. These two tricks make the “map labelling” approach more computationally tractable, and 

allow using a large number n of random realizations of Z(x). 

 
Both parts of this paper are illustrated on a simple model that computes the total nitrate load in a 

catchment from spatially distributed input data on climate, irrigation, landuse and soil type. 
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For the general form of a single response nonlinear regression model

y = f(X,Θ) + ǫ (1)

where y is n-element vector of observed response values for particular values of the regressor
variables X = {x1,x2, . . . ,xn}. Θ is a k-element vector of unknown parameters, f is the vector
of predicted values of the response variable for given X and Θ, and ǫ is a vector of independent
and normally distributed random errors; the local D-optimal design minimizes the determinant
of the approximate variance-covariance matrix of the parameter estimates with respect to the
experimental settings X . The D-optimality is defined by:

max D = |V ′0V0| (2)

where the n × k matrix V0 consists of the local sensitivity coefficients, ∂f(X,Θ)
∂Θ evaluated at an

initial parameter estimates Θ0. Under the linear approximation, the model response surface is
replaced by its tangent plane and the usual ellipsoidal joint inference region for Θ is the image in
parameter space of a spherical region on the tangent plane. The volume of the ellipsoidal region
evaluated at Θ0 is given by |V ′0V0|

−1/2. By maximizing D, this volume is minimized. Thus, for
a given nonlinear model response, the D-optimal criterion ensures that the design is such that
large regions on the tangent plane map into small regions in the parameter space.When model
nonlinearity is pronounced, the local D-optimality can produce designs with poor performance and
little information about parameters.

To overcome the linearity and peculiarity of the local sensitivity coefficients, Sulieman et.al. (2001,
2004) have developed profile-based sensitivity coefficients which account for model nonlinearity and
parameter estimate correlations. For a parameter of interest,θi, profile-based sensitivity coefficient
is defined by:

pi =
Df(X, θi,Θ−i(θi))

Dθi
(3)

where the operator D means total derivative with respect to θi and pi is n × 1 vector containing
profile-based sensitivity coefficients for θi evaluated at the n design points.
In terms of the first and second order derivative information of the model function, f(X,Θ), pi is
given by:

pi = vi − V−i(V
′

−iV−i − [e′][V−i−i])
−1(V ′

−ivi − V ′−iie) (4)

where vi is the n× 1 vector of local sensitivity coefficients with respect to θi; V−i is an n× (k− 1)
matrix consisting of first derivative vectors with respect to Θ−i; V−i−i is the n× (k− 1)× (k− 1)
array of the second order derivatives of f(X,Θ) with respect to Θ−i; V−ii is the n× (k− 1) matrix
of the second derivatives of with respect to Θ−i and θi, and e is the n-element residuals vector.

Sulieman et. al. (2009) showed that the profile-based sensitivity coefficients, pi, measure the
influence that θi exerts on the predicted response after the removal of its co-dependencies with
the remaining parameters. These co-dependencies are measured using second-order derivative
information of the model function so as to account for model nonlinearity. Hamilton and Watts
(1985)demonstrated that the matrix [e′][V−i−i] is a function of only the intrinsic curvature portion
of V−i−i and hence the extent to which profile-based sensitivities differ from the local sensitivities
depends on the intrinsic nonlinearity of the model structure and the strength of correlations between
parameter estimates.
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Using the profile-based sensitivity coefficients defined in equation (4), the profile-based D-optimality
can be defined as maximizing:

max DP = |P ′0P0| (5)

where the matrix P = [p1p2 . . .pk] is evaluated at Θ0.
With the above interpretation of pi,by maximizing Dp, the volume of the inference region in a
less-correlated parameter space than the original parameters is minimized. Hence, the resulting
design produce more precise and less correlated parameter estimates than the corresponding local
D-optimal design.

Application of Dp-optimality to model examples will be presented. The applications include both
starting designs and sequential designs. The resulting designs will be compared to those obtained
by the classicalD-optimality. Some computational aspects of the new designs will also be discussed.
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The understanding of gene-environment interaction is a crucial issue in plant breeding. For this
objective, mechanistic models of plant growth can help disentangle the genotypic and environmental
effects [1]. Each genotype is characterized by a specific vector of model parameters [2] and ideally,
these parameters are stable for a certain range of environments. As explained in [2], each parameter
can be seen as resulting from the influences of several genes (epistasis), while the same gene can
influence several parameters (pleiotropy). As a consequence, in a family of genotypes (for a same
species), there may be strong correlations between parameters.

Moreover, in order to be able to use plant models to characterize and differentiate genotypes, the
parametric estimation methods should be precise enough so that the estimation uncertainty remains
small and so that statistically significant differences can be detected between the parameters of
different genotypes. For this purpose, sensitivity analysis was shown to be a very helpful method
in the estimation process, specifically for screening non influential parameters that can be fixed to
some nominal values (thus common to all genotypes, the model parameter is thus considered as
non-genotypic parameter).

Therefore, when performing sensitivity analysis of plant growth models with the specific objective of
characterization of genotypes, we need to use a method able to take into account correlated inputs.
For example, the classical Sobol method can not be applied straightforwardly. The objective of
this paper is thus to introduce a method adapted to the sensitivity analysis for correlated inputs
and to apply it to a plant model. The SUNFLO model of sunflower growth [1] is used for this
purpose. The model parameters for a family of 20 genotypes have been estimated or measured
with very heavy experimental work [1] and this set of parameter vectors is used to compute the
statistical distribution in the parameter space.

Sensitivity analysis (SA) for correlated input is discussed in [3][4]. The problem with correlated
sample is that the reduction in variance that can be achieved by fixing one factor depends on
whether or not other factors have been fixed, and the incremental reduction in variance for each
factor depends on the order in which factors are fixed [3].

As in [4], two general settings for SA has been discussed for this issue. Each setting is based on
a bet posed on the model y = f(x1, x2, · · · , xk), where the input can be correlated. In the setting
1, the objective is to find out which parameter would induce the largest reduction in variance
if it were fixed to its ’true’ value. Because such true value is in general unknown, the bet can
be rationally placed by computing the estimates Vxi

= V (E(y|xi)), whether or not the input is
correlated. Numerically, in the case of correlated inputs, the strategy of sampling and re-sampling
matrix in [5] can not be applied because it is based on the assumption that all the factors are
independent. Brute-force method can be applied in this case since the computing cost is not so
prohibitive in this ’first-order’ most important factor searching case.

For the setting 2, the objective is to find out the smallest subset of x capable of inducing a target
reduction in the unconditional variance V (y), as in Sobol’s, for the uncorrelated case, a rational
selection strategy for the subset of interest in based on the computation of the full set of Si and
STi as indicated in [5]. For the correlated case, we follow the work presented in [4]. We set the
the target reduction to be the total variance of the model output, so that all the analyzed factors
could be selected step by step, which potentially indicates the relative priorities of these factors
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for reducing the model variance.

The SUNFLO model estimates the biomass production for the crop sunflower by inputting environ-
mental information, mainly temperature, precipitation, and evaporation reference. It simulates the
plant’s phenology, the leave’s development, the accumulation and distribution of biomass, and the
production of seeds. It takes into consideration the plant water budget which determines whether
the available water quantity is enough for the plant to grow up in good conditions.

We took out 12 genotypic parameters (as listed in table.1) from SUNFLO model as we know for
the analysis. Parameter distribution characteristics and correlation matrix was obtained from the
20 values of each parameter from 20 genotypes. We present here our application of setting 2. In
table.1, we can see that the ranking indicated by Si without input correlation is very different
with Vxi

/V = V (E(y|xi))/V considering correlation. It means that Sobol’s method can not be
applied in our case. We can also see that, though computed with the consideration of correlation,
Vxi

= V (E(y|xi)) still can not be the value of ranking according to which we select group of
parameters that can bring certain percentage reduction of total variance, because fixing one factor
depends on whether or not other factors have been fixed as strong correlation exists.

Table 1: Setting 2

Name RankVxi
Vxi

Vxi
/V figuremerit Si

RE 1 3805.64 1.90382 - 0.0159822
dateTT

E1
4 1873.18 0.938112 1.15393 0

HIgraine 3 2872.32 1.43812 0.917656 0.629579
RT 2 3620.15 1.81255 0.817215 0.108488
SFimax 5 1781.7 0.892071 0.483213 0.0291807
NFfinal 7 742.626 0.371507 0.418973 0.000350815
HIcapitulemax 6 1272.91 0.63678 0.369769 0.0559516
positionSFiMax 12 218.782 0.109527 0.0510487 0.000368093
coeffextinction 11 276.681 0.138418 0.0379919 0.0190574
dateTT

M0
9 416.406 0.208339 0.0363175 0.0134685

dateTT
M3

10 370.471 0.185508 0.0176194 0.113339
dateTT

F1
8 584.614 0.292736 0.00782156 0.00206494
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Computer model simulations are widely used in the investigation of complex hydrological systems.
In particular, hydrological models are tools that help both to better understand hydrological pro-
cesses and to predict extreme events such as floods and droughts. Usually, model parameters need
to be estimated through calibration, in order to constrain model outputs to observed variables.
Relevant model parameters used for calibration are usually selected based on expert knowledge of
the modeller or by using a local one-at-a-time (OAT) sensitivity analysis (SA). However, in case of
complex models those approaches may not result in proper identification of the most sensitive pa-
rameters for model calibration. In particular local OAT SA methods are only effective for assessing
the relative importance of input factors when the model is linear, monotonic, and additive, which is
rarely the case for complex environmental models. In contrast Global Sensitivity Analysis (GSA)
is a formal method for statistical evaluation of relevant parameters that contribute significantly to
model performance. GSA techniques explore the entire feasible space of each model parameter,
and they do not require any assumptions on the model nature (such as linearity or additivity).

In this work we apply the GSA to LISFLOOD, a fully-distributed hydrological model used for
flood forecasting at Pan-European scale within the European Flood Awareness System (EFAS).
Two case studies are considered, snowmelt- and evapotranspiration-driven catchments, to identify
sensitive parameters for both types of hydrological regimes. Results of the GSA will then be used
for selecting parameters that need to be estimated during model calibration. Considering the large
number of parameters of a fully-distributed model, a two-step GSA framework is applied. First,
we implement the computationally efficient screening method of Morris. This method requires
a limited number of simulations and produces a qualitative ranking and selection of important
factors. As a second step, we apply the variance-based method of Sobol, only to the subset of
factors determined as important during the previous screening. The method of Sobol provides
quantitative estimates for first order and total order sensitivity indexes of input factors.

The calibration results after the GSA will be described for both case studies and compared against
those obtained by using only prior expert knowledge.
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